What is this research about?
The McClonskey/Mueller Satisfaction Scale (MMSS) was originally developed in 1990 to rank rewards that encourage nurse retention. Mueller and McCloskey (1990) suggested that eight factors could be grouped into the three originally hypothesized job satisfaction domains. Safety rewards included three job satisfaction factors: extrinsic rewards, scheduling, and balance of family and work. Social rewards included two job satisfaction factors: co-workers and interaction opportunities. Psychological rewards included the remaining three job satisfaction factors: professional opportunities, praise and recognition, and work control and responsibility. Responses to items were rated using a 5-point Likert scale ranging from 1 (very dissatisfied) to 5 (very satisfied).

Recent research has used this scale to measure nurse job satisfaction in a variety of clinical and geographic settings. However, some researchers have questioned the current relevance of the eight factor structure and inadequate reliabilities of four of the eight MMSS subscales.

The purpose of this paper was to describe the psychometric properties of the MMSS as used with a large sample of Canadian nurses working in Ontario acute care hospitals.

What you need to know:
This study does not confirm the original eight factors of the MMSS. Instead, this study supports a seven-factor model.

What did the researchers do?
Researchers analyzed data from a survey of 8,456 Registered Nurses (RNs) and Registered Practical Nurses (RPNs) to establish psychometric properties of the MMSS. Data analysis focused on testing MMSS instrument dimensionality, validity testing, and factor internal consistency reliability.

What did the researchers find?
The researchers found a seven-factor structure consisting of 23 items instead of the original eight-factor model that included the 31 items developed and validated by Mueller and McClonskey (1990). The model found in this
The study continues to be conceptually consistent with the theoretical foundation of the MMSS. The researchers found that safety rewards and incentives explained the most variation in job satisfaction, followed by psychological rewards or incentives. Social rewards explained the least amount of variance in job satisfaction.

- Safety rewards include nurse satisfaction with scheduling, salary and benefits, and support for family responsibilities. These factors explain 21.7% of variation in job satisfaction.
- Social rewards include nurse satisfaction with social and interaction opportunities, and with collegial relationships and support. These factors explain 15.4% of variation in job satisfaction.
- Psychological rewards include nurse satisfaction with work conditions and supervisor support, and with scholarly opportunities. These factors explain 20.7% of variation in job satisfaction.

Validity of the seven new factors of the MMSS was supported through hypothesis testing and tests predicting validity. The difference between these findings and the original MMSS is likely attributable to changes in work conditions and employment agreements since the original instrument was tested. For example, nurses’ pay and benefits have increased and many employers provide improved supports for balancing work-family responsibilities.

How can you use this research?
Researchers can use the redeveloped MMSS to measure nurse job satisfaction and provide this information to nurse managers and leaders. From a research perspective, using an instrument with 23 items that measure 7 aspects of nurse job satisfaction is more desirable than an instrument with 31 items. However, MMSS items must be redeveloped to improve internal consistency factors.

Original Article:
To learn more about this study, we invite you to read the original research article:

About the Researcher
Ann Tourangeau is an Associate Professor in the Faculty of Nursing at the University of Toronto, and an adjunct scientist at ICES. tourangeau.research@utoronto.ca

Keywords
Factor analysis, job satisfaction, McClonskey/Mueller Satisfaction Scale, psychometric testing